Gases

"The particles of the air are in contact with each other, yet they do not fit closely in every part, but void spaces are left between them, as in the sand on the sea shore: the grains of sand must be imagined to correspond to the particles of air, and the air between the grains of sand to the void spaces between the particles of air. Hence, when any force is applied to it, the air is compressed, and, contrary to its nature, falls into the vacant spaces from the pressure exerted on its particles: but when the force is withdrawn, the air returns again to its former position from the elasticity of its particles, as is the ease with horn shavings and sponge, which, when compressed and set free again, return to the same position and exhibit the same bulk."

Hero of Alexandria, ~AD 60

5.6 Kinetic Molecular Theory of Gases

5.7 Effusion and Diffusion
5.8 Collisions of Gas Particles with Container Walls
5.9 Intermolecular Collisions
5.10 Real Gases

Kinetic Molecular Theory of Gases

postulates of kinetic theory:

molecular volume is negligible compared to distance between molecules large number of molecules, ceaseless random motion no forces of attraction/repulsion between molecules all collisions are elastic (no energy lost)

ON A MOLECULAR LEVEL WHAT IS THE PRESSURE OF AN IDEAL GAS DUE TO?

$P=$ force/area
force $=m a$
$=m \Delta u l \Delta t$
$=\Delta(m u) / \Delta t \quad(m u$ is momentum $)$
$P \sim$ (\# collisions) \times (change in momentum per collision)

Collisions with surfaces create pressure.

Kinetic Molecular Theory of Gases

$P \sim$ (\# collisions) \times (change in momentum per collision) conclusions

1. $P V=n R T={ }^{1} I_{3} N m\left\langle u^{2}\right\rangle$
2. $1 / 2 N_{o} m\left\langle u^{2}\right\rangle=3 / 2 R T \quad$ average kinetic energy (T)
3. $\left\langle u^{2}\right\rangle=3 R T / M$
root-mean-square (rms) speed $=\sqrt{ }\left\langle u^{2}\right\rangle \quad u_{\mathrm{rms}}=\sqrt{ } 3 R T / M$ most probable $=\sqrt{ }(2 R T / M)$
average $=\sqrt{ }(8 R T / \pi M)$
Boltzmann's constant, $k_{\mathrm{B}}=R / N_{0} \quad->\quad P V=n R T=N k_{\mathrm{B}} T$
EX 10. What is $u_{\text {rms }}$ for helium at $-73^{\circ} \mathrm{C}$? $M=4.006 \mathrm{~g} / \mathrm{mol}$
$\mathrm{u}_{\mathrm{rms}}=$
$\sqrt{ }\left[3\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(273.15-73) \mathrm{K} / 4.0026 \times 10^{-3}\right.$ $\mathrm{kg} / \mathrm{mol}]$
$=1120 \mathrm{~m} \mathrm{~s}^{-1}\left[1 \mathrm{~J}\left(\right.\right.$ kinetic energy $\left.\left.\sim m u^{2}\right)=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}\right]$

LOOK AT CHANGES

(a)
$2 \times m=>$
$2 \times$ momentum
$P \sim m$

$2 \times N / V=>$ $2 \times \#$ collisions $P \sim N / V$

$2 \times u=>$
$2 \times$ \# collisions $+2 \times$ momentum
$P \sim u^{2}$
P~Nmu ${ }^{2} / V$

Maxwell-Boltzmann Distribution Law

distribution of velocities of the particles in an ideal gas

$$
f(u)=4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} u^{2} \mathrm{e}^{-m u^{2} / 2 k T}
$$

$\begin{array}{c}\text { Variation of Velocity Distribution } \\ \text { with Temperature }\end{array}$

Graham's Law of Effusion

OBSERVATION: effusion rate for escape
of a gas through a tiny hole into a vacuum

$$
\propto 1 / \sqrt{ } M
$$

KINETIC THEORY
INTERPRETATION: two gases at same T, P, V contain equal numbers of molecules (Avogadro)

Before effusion

During effusion

Lighter molecules $\left(\mathrm{H}_{2}\right)$ with higher average speeds strike the barrier more often and pass more often through it than heavier, slower molecules $\left(\mathrm{N}_{2}\right)$ at the same temperature.

$$
\frac{\text { effusion rate of } A}{\text { effusion rate of } B}=\frac{\operatorname{urms}(\mathrm{A})}{\operatorname{urms}(\mathrm{B})}=\sqrt{\frac{M_{\mathrm{B}}}{M_{\mathrm{A}}}}
$$

Collisions of Gaseous Molecules with a Wall

Problem: Consider an area A of wall \mathbf{W} in contact with a volume \boldsymbol{V} of gas containing N molecules. We want to calculate the frequency of molecular collisions with the wall, the number of molecules that strike the wall per unit time.

Let ΔN_{w} be the number of molecules that strike the wall W in the time interval Δt. Then the collision rate $\left(Z_{\mathrm{w}}\right)$ is $\Delta N_{\mathrm{w}} / \Delta t$.
 What effects this rate? We might expect that $\Delta N_{W} / \Delta t$ is proportional to

1. the area of the wall, A
2. number of molecules per unit volume, N / V
3. the average speed (moving towards the wall)

\[

\]

Collisions Between Gaseous Molecules (Intermolecular)

cross sectional area is really
perpendicular to direction of motion

since distance $=$ velocity \times time
mean free path (average distance a molecule travels between successive collisions is

$$
\lambda=\langle u\rangle / Z=1 / \sqrt{ } 2(N / V) \pi d^{2}
$$

Real Gases

"The particles of the air are in contact with each other, yet they do not fit closely in every part, but void spaces are left between them, as in the sand on the sea shore: the grains of sand must be imagined to correspond to the particles of air, and the air between the grains of sand to the void spaces between the particles of air. Hence, when any force is applied to it, the air is compressed, and, contrary to its nature, falls into the vacant spaces from the pressure exerted on its particles: but when the force is withdrawn, the air returns again to its former position from the elasticity of its particles, as is the ease with horn shavings and sponge, which, when compressed and set free again, return to the same position and exhibit the same bulk."

Hero of Alexandria, ~ AD 60

"Thus far we have always considered molecules to be material points, and thus have introduced a simplification in the model which is at once in contradiction with the actual phenomena. Even a molecule in the simplest form, consisting of a single atom, must have a certain extension; the various forces exerted upon it by the other molecules can thus not be considered to act upon a single point."

Johannes Diderik van der Waals, 1873
(Nobel Prize in Physics in 1910 "for his work on the equation of state for gases and liquids".)

5.10 - Real Gases interactions (attractions and repulsions) compressibility, Z
 van der Waals equation of state (simplest to account for intermolecular forces existence of liquid and solid phases real, ideal, and van der Waals

Characteristics of a Real Gas

Real gases - interact and have molecular volume Compare energy to realistic potential $-V(r)$
molecules very close, repel, non-zero volumes overlap; separate further attract, van der Waals forces
$V(r)$ has a minimum (distance for maximum attraction)
large separations, approach ideal (P ~ 0), big V molecular size becomes negligible; large distance, electrons don't "feel" one another
transition to ideal at $\left|V\left(r_{\text {trans }}\right)\right| \sim k T$
Attraction due to electron response to electrons in other molecules, fluctuating dipole moments - Polarizability, varies depending upon molecule

Potential energy for two atoms or molecules

Characteristics of a Real Gas

Repulsive forces

Pressure is lowered at attractive distances and raised at very short repulsive distances result: low T, high P, get high density -> gives a minimum V for a liquid or solid phase (liquids and solids could not exist were it not for attractive forces)

Attractive forces

Compressibility

The effect of attractive and repulsive forces can be seen in the compressibility, Z where

$$
Z=P V / n R T=P V_{m} / R T
$$

$Z=1$ for an ideal gas and deviations from unity are due to attractive and repulsive forces between the atoms or molecules.

Pressure is lowered at attractive distances (easier to compress) and raised at short (repulsive) distances (harder to compress)
$P V_{m} / R T$ versus P for several real
gases at $25^{\circ} \mathrm{C}$

Van der Waals Equation of State (EOS)

First eos accounting for attractive and repulsive forces given by van der Waals:

$$
P=n R T I(V-b n)-a\left(n^{2} I V^{2}\right)
$$

rearranging:

$$
P V / n R T=1 /(1-b n / V)-a n / R T V
$$

shows how compressibility is effected by these forces: attractive forces (through a) decrease Z ratio <1, repulsive forces (through b) increase Z ratio >1 where repulsive forces account for finite molecular size; a,b vary with molecular properties, fit to experimental observables.

Van der Waals Equation of State (EOS)

$$
\begin{gathered}
P=n R T /(V-b n)-a\left(n^{2} / V^{2}\right) \\
P V=n R T \\
\left(P+a n^{2} / V^{2}\right)(V-b n)=n R T
\end{gathered}
$$

$$
\left(P+\frac{a n^{2}}{V^{2}}\right)(V-b n)=n R T
$$

Van der Waals Constants of Several Gases

Name	Formula	\boldsymbol{a} (atm $\mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \boldsymbol{\jmath}$	$\boldsymbol{b}\left(\mathbf{L} \mathbf{~ m o l}^{-\mathbf{1}}\right)$
Ammonia	NH_{3}	4.170	0.03707
Argon	Ar	1.345	0.03219
Carbon dioxide	CO_{2}	3.592	0.04267
Hydrogen	H_{2}	0.2444	0.02661
Hydrogen chloride	HCl	3.667	0.04081
Methane	CH_{4}	2.253	0.04278
Nitrogen	N_{2}	1.390	0.03913
Nitrogen dioxide	NO_{2}	5.284	0.04424
Oxygen	O_{2}	1.360	0.03183
Sulfur dioxide	SO_{2}	6.714	0.05636
Water	$\mathrm{H}_{2} \mathrm{O}$	5.464	0.03049

